MathDB
A Particle in the Cartesian Plane

Source:

June 13, 2009
conicsparabolaanalytic geometry

Problem Statement

A particle is placed on the parabola y \equal{} x^2 \minus{} x \minus{} 6 at a point P P whose y y-coordinate is 6 6. It is allowed to roll along the parabola until it reaches the nearest point Q Q whose y y-coordinate is \minus{}6. The horizontal distance traveled by the particle (the numerical value of the difference in the x x-coordinates of P P and Q Q) is: <spanclass=latexbold>(A)</span> 5<spanclass=latexbold>(B)</span> 4<spanclass=latexbold>(C)</span> 3<spanclass=latexbold>(D)</span> 2<spanclass=latexbold>(E)</span> 1 <span class='latex-bold'>(A)</span>\ 5\qquad <span class='latex-bold'>(B)</span>\ 4\qquad <span class='latex-bold'>(C)</span>\ 3\qquad <span class='latex-bold'>(D)</span>\ 2\qquad <span class='latex-bold'>(E)</span>\ 1