Square Minimization
Source:
April 6, 2008
geometryanalytic geometrygraphing linesslopetrigonometryinequalitiesquadratics
Problem Statement
Let be a triangle with AB \equal{} 5, BC \equal{} 4 and AC \equal{} 3. Let and be squares inside with disjoint interiors such that they both have one side lying on . Also, the two squares each have an edge lying on a common line perpendicular to , and has one vertex on and has one vertex on . Determine the minimum value of the sum of the areas of the two squares.
[asy]import olympiad;
import math;
import graph;unitsize(1.5cm);
pair A, B, C;A = origin;
B = A + 5 * right;
C = (9/5, 12/5);pair X = .7 * A + .3 * B;
pair Xa = X + dir(135);
pair Xb = X + dir(45);pair Ya = extension(X, Xa, A, C);
pair Yb = extension(X, Xb, B, C);pair Oa = (X + Ya)/2;
pair Ob = (X + Yb)/2;pair Ya1 = (X.x, Ya.y);
pair Ya2 = (Ya.x, X.y);
pair Yb1 = (Yb.x, X.y);
pair Yb2 = (X.x, Yb.y);draw(A--B--C--cycle);
draw(Ya--Ya1--X--Ya2--cycle);
draw(Yb--Yb1--X--Yb2--cycle);label("", A, W);
label("", B, E);
label("", C, N);label("", Oa, origin);
label("", Ob, origin);[/asy]