MathDB
Today's calculation of Integral 270

Source: 1994 Tohoku University entrance exam

January 18, 2008
calculusintegrationfunctiongeometryalgebrabinomial theoremcalculus computations

Problem Statement

Let f(x) f(x) be the continuous function at 0x1 0\leq x\leq 1 such that \int_0^1 x^kf(x)\ dx\equal{}0 for integers k\equal{}0,\ 1,\ \cdots ,\ n\minus{}1\ (n\geq 1). (1) For all real numbers t, t, find the minimum value of g(t)\equal{}\int_0^1 |x\minus{}t|^n\ dx. (2) Show the following equation for all real real numbers t. t. \int_0^1 (x\minus{}t)^nf(x)\ dx\equal{}\int_0^1 x^nf(x)\ dx (3) Let M M be the maximum value of the function f(x) |f(x)| for 0x1. 0\leq x\leq 1. Show that \left|\int_0^1 x^nf(x)\ dx\right|\leq \frac{M}{2^n(n\plus{}1)}