Let n≥2 be an integer. Let x1≥x2≥...≥xn and y1≥y2≥...≥yn be 2n real numbers such that 0=x1+x2+...+xn=y1+y2+...+ynand1=x12+x22+...+xn2=y12+y22+...+yn2. Prove that i=1∑n(xiyi−xiyn+1−i)≥n−12.
Proposed by David Speyer and Kiran Kedlaya