MathDB
Romania TST 2022 Day 2 P5

Source: Romania TST 2022

May 15, 2022
combinatoricslattice pointsromaniaRomanian TST

Problem Statement

Let m,n2m,n\geq 2 be positive integers and S[1,m]×[1,n]S\subseteq [1,m]\times [1,n] be a set of lattice points. Prove that if Sm+n+m+n412|S|\geq m+n+\bigg\lfloor\frac{m+n}{4}-\frac{1}{2}\bigg\rfloorthen there exists a circle which passes through at least four distinct points of S.S.