MathDB
inequality involving a recurrent sequence

Source: Romanian District Olympiad 2017, Grade XI, Problem 1

October 10, 2018
inequalitiesSequenceslimit

Problem Statement

Let (an)n1 \left( a_n \right)_{n\ge 1} be a sequence of real numbers such that a1>2 a_1>2 and an+1=a1+2an, a_{n+1} =a_1+\frac{2}{a_n} , for all natural numbers n. n.
a) Show that a2n1+a2n>4, a_{2n-1} +a_{2n} >4 , for all natural numbers n, n, and limnan=2. \lim_{n\to\infty} a_n =2. b) Find the biggest real number a a for which the following inequality is true: \sqrt{x^2+a_1^2} +\sqrt{x^2+a_2^2} +\sqrt{x^2+a_3^2} +\cdots +\sqrt{x^2+a_n^2} > n\sqrt{x^2+a^2},  \forall x\in\mathbb{R} , \forall n\in\mathbb{N} .