MathDB
Macedonia National Olympiad 2016 Problem 5

Source: Macedonia National Olympiad 2016

April 9, 2016
inequalitiesMacedonia

Problem Statement

Let n3n\ge3 and a1,a2,...,anR+a_1,a_2,...,a_n \in \mathbb{R^{+}}, such that 11+a14+11+a24+...+11+an4=1\frac{1}{1+a_1^4} + \frac{1}{1+a_2^4} + ... + \frac{1}{1+a_n^4} = 1. Prove that: a1a2...an(n1)n4a_1a_2...a_n \ge (n-1)^{\frac n4}