MathDB
Romanian National Olympiad 2018 - Grade 10 - problem 1

Source: Romania NMO - 2018

April 12, 2018

Problem Statement

Let nN2n \in \mathbb{N}_{\geq 2} and a1,a2,,an(1,).a_1,a_2, \dots , a_n \in (1,\infty). Prove that f:[0,)Rf:[0,\infty) \to \mathbb{R} with f(x)=(a1a2...an)xa1xa2x...anxf(x)=(a_1a_2...a_n)^x-a_1^x-a_2^x-...-a_n^x is a strictly increasing function.