MathDB
Problems
Contests
National and Regional Contests
Romania Contests
District Olympiad
2023 District Olympiad
P4
Three functions and a binary operation
Three functions and a binary operation
Source: Romanian District Olympiad 2023 12.4
March 11, 2023
real analysis
abstract algebra
function
Problem Statement
Consider the functions
f
,
g
,
h
:
R
⩾
0
→
R
⩾
0
f,g,h:\mathbb{R}_{\geqslant 0}\to\mathbb{R}_{\geqslant 0}
f
,
g
,
h
:
R
⩾
0
→
R
⩾
0
and the binary operation
∗
:
R
⩾
0
×
R
⩾
0
→
R
⩾
0
*:\mathbb{R}_{\geqslant 0}\times \mathbb{R}_{\geqslant 0}\to \mathbb{R}_{\geqslant 0}
∗
:
R
⩾
0
×
R
⩾
0
→
R
⩾
0
defined as
x
∗
y
=
f
(
x
)
+
g
(
y
)
+
h
(
x
)
⋅
∣
x
−
y
∣
,
x*y=f(x)+g(y)+h(x)\cdot|x-y|,
x
∗
y
=
f
(
x
)
+
g
(
y
)
+
h
(
x
)
⋅
∣
x
−
y
∣
,
for all
x
,
y
∈
R
⩾
0
x,y\in\mathbb{R}_{\geqslant 0}
x
,
y
∈
R
⩾
0
. Suppose that
(
R
⩾
0
,
∗
)
(\mathbb{R}_{\geqslant 0},*)
(
R
⩾
0
,
∗
)
is a commutative monoid. Determine the functions
f
,
g
,
h
f,g,h
f
,
g
,
h
.
Back to Problems
View on AoPS