MathDB
Three functions and a binary operation

Source: Romanian District Olympiad 2023 12.4

March 11, 2023
real analysisabstract algebrafunction

Problem Statement

Consider the functions f,g,h:R0R0f,g,h:\mathbb{R}_{\geqslant 0}\to\mathbb{R}_{\geqslant 0} and the binary operation :R0×R0R0*:\mathbb{R}_{\geqslant 0}\times \mathbb{R}_{\geqslant 0}\to \mathbb{R}_{\geqslant 0} defined as xy=f(x)+g(y)+h(x)xy,x*y=f(x)+g(y)+h(x)\cdot|x-y|,for all x,yR0x,y\in\mathbb{R}_{\geqslant 0}. Suppose that (R0,)(\mathbb{R}_{\geqslant 0},*) is a commutative monoid. Determine the functions f,g,hf,g,h.