Source: Romanian IMO Team Selection Test TST 2003, problem 3
September 24, 2005
Problem Statement
Let n,k be positive integers such that nk>(k+1)! and consider the set
M=\{(x_1,x_2,\ldots,x_n)\dvd x_i\in\{1,2,\ldots,n\},\ i=\overline{1,k}\}.
Prove that if A⊂M has (k+1)!+1 elements, then there are two elements {α,β}⊂A, α=(α1,α2,…,αn), β=(β1,β2,…,βn) such that
(k+1)!∣(β1−α1)(β2−α2)⋯(βk−αk).