MathDB
Which IMO Shortlist Problem formulation do you prefer?

Source: Imo Shortlist 1993, Romania 3

March 25, 2006
algebraSequenceInequalityIMO Shortlist

Problem Statement

Let c1,,cnRc_1, \ldots, c_n \in \mathbb{R} with n2n \geq 2 such that 0i=1ncin. 0 \leq \sum^n_{i=1} c_i \leq n. Show that we can find integers k1,,knk_1, \ldots, k_n such that i=1nki=0 \sum^n_{i=1} k_i = 0 and 1nci+nkin 1-n \leq c_i + n \cdot k_i \leq n for every i=1,,n.i = 1, \ldots, n. [hide="Another formulation:"] Let x1,,xn,x_1, \ldots, x_n, with n2n \geq 2 be real numbers such that x1++xnn. |x_1 + \ldots + x_n| \leq n. Show that there exist integers k1,,knk_1, \ldots, k_n such that k1++kn=0. |k_1 + \ldots + k_n| = 0. and xi+2nki2n1 |x_i + 2 \cdot n \cdot k_i| \leq 2 \cdot n -1 for every i=1,,n.i = 1, \ldots, n. In order to prove this, denote ci=1+xi2c_i = \frac{1+x_i}{2} for i=1,,n,i = 1, \ldots, n, etc.