MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania Team Selection Test
2006 Romania Team Selection Test
4
Inequality with semiconvex sequences
Inequality with semiconvex sequences
Source: Romanian IMO TST 2006, day 4, problem 4
May 19, 2006
inequalities
function
integration
calculus
derivative
inequalities unsolved
Problem Statement
Let
p
p
p
,
q
q
q
be two integers,
q
≥
p
≥
0
q\geq p\geq 0
q
≥
p
≥
0
. Let
n
≥
2
n \geq 2
n
≥
2
be an integer and
a
0
=
0
,
a
1
≥
0
,
a
2
,
…
,
a
n
−
1
,
a
n
=
1
a_0=0, a_1 \geq 0, a_2, \ldots, a_{n-1},a_n = 1
a
0
=
0
,
a
1
≥
0
,
a
2
,
…
,
a
n
−
1
,
a
n
=
1
be real numbers such that
a
k
≤
a
k
−
1
+
a
k
+
1
2
,
∀
k
=
1
,
2
,
…
,
n
−
1.
a_{k} \leq \frac{ a_{k-1} + a_{k+1} } 2 , \ \forall \ k=1,2,\ldots, n-1 .
a
k
≤
2
a
k
−
1
+
a
k
+
1
,
∀
k
=
1
,
2
,
…
,
n
−
1.
Prove that
(
p
+
1
)
∑
k
=
1
n
−
1
a
k
p
≥
(
q
+
1
)
∑
k
=
1
n
−
1
a
k
q
.
(p+1) \sum_{k=1}^{n-1} a_k^p \geq (q+1) \sum_{k=1}^{n-1} a_k^q .
(
p
+
1
)
k
=
1
∑
n
−
1
a
k
p
≥
(
q
+
1
)
k
=
1
∑
n
−
1
a
k
q
.
Back to Problems
View on AoPS