MathDB
Problems
Contests
National and Regional Contests
Romania Contests
IMAR Test
2005 IMAR Test
2
Find the image of the function M:X->R
Find the image of the function M:X->R
Source: GMB-IMAR 2005, Seniors, Problem 2
October 10, 2005
function
inequalities unsolved
inequalities
Problem Statement
Let
n
≥
3
n \geq 3
n
≥
3
be an integer and let
a
,
b
∈
R
a,b\in\mathbb{R}
a
,
b
∈
R
such that
n
b
≥
a
2
nb\geq a^2
nb
≥
a
2
. We consider the set
X
=
{
(
x
1
,
x
2
,
…
,
x
n
)
∈
R
n
∣
∑
k
=
1
n
x
k
=
a
,
∑
k
=
1
n
x
k
2
=
b
}
.
X = \left\{ (x_1,x_2,\ldots,x_n)\in\mathbb{R}^n \mid \sum_{k=1}^n x_k = a, \ \sum_{k=1}^n x_k^2 = b \right\} .
X
=
{
(
x
1
,
x
2
,
…
,
x
n
)
∈
R
n
∣
k
=
1
∑
n
x
k
=
a
,
k
=
1
∑
n
x
k
2
=
b
}
.
Find the image of the function
M
:
X
→
R
M: X\to \mathbb{R}
M
:
X
→
R
given by
M
(
x
1
,
x
2
,
…
,
x
n
)
=
max
1
≤
k
≤
n
x
k
.
M(x_1,x_2,\ldots,x_n) = \max_{1\leq k\leq n} x_k .
M
(
x
1
,
x
2
,
…
,
x
n
)
=
1
≤
k
≤
n
max
x
k
.
Dan Schwarz
Back to Problems
View on AoPS