MathDB
P27 [Algebra] - Turkish NMO 1st Round - 2005

Source:

November 2, 2013

Problem Statement

What is the maximum value of the difference between the largest real root and the smallest real root of the equation system ax2+bx+c=0bx2+cx+a=0cx2+ax+b=0\begin{array}{rcl} ax^2 + bx+ c &=& 0 \\ bx^2 + cx+ a &=& 0 \\ cx^2 + ax+ b &=& 0 \end{array}, where at least one of the reals a,b,ca,b,c is non-zero?
<spanclass=latexbold>(A)</span> 0<spanclass=latexbold>(B)</span> 1<spanclass=latexbold>(C)</span> 2<spanclass=latexbold>(D)</span> 32<spanclass=latexbold>(E)</span> There is no upper-bound <span class='latex-bold'>(A)</span>\ 0 \qquad<span class='latex-bold'>(B)</span>\ 1 \qquad<span class='latex-bold'>(C)</span>\ \sqrt 2 \qquad<span class='latex-bold'>(D)</span>\ 3\sqrt 2 \qquad<span class='latex-bold'>(E)</span>\ \text{There is no upper-bound}