MathDB
so much nt in bulgarian mo 2004 :) [Cauchy-Davenport theorem

Source: Bulgarian Math Olympiad MO 2004, problem 6

May 17, 2004
inductionnumber theory unsolvednumber theory

Problem Statement

Let p p be a prime number and let 0a1<a2<<am<p 0\leq a_{1}< a_{2}<\cdots < a_{m}< p and 0b1<b2<<bn<p 0\leq b_{1}< b_{2}<\cdots < b_{n}< p be arbitrary integers. Let k k be the number of distinct residues modulo p p that a_{i}\plus{}b_{j} give when i i runs from 1 to m m, and j j from 1 to n n. Prove that a) if m\plus{}n > p then k \equal{} p; b) if m\plus{}n\leq p then k\geq m\plus{}n\minus{}1.