MathDB
Determine the number of (a_1,a_2,\cdots,a_m)

Source: CGMO 2020 Day2 P8

August 12, 2020
combinatorics

Problem Statement

Let nn be a given positive integer. Let N+\mathbb{N}_+ denote the set of all positive integers.
Determine the number of all finite lists (a1,a2,,am)(a_1,a_2,\cdots,a_m) such that: (1) mN+m\in \mathbb{N}_+ and a1,a2,,amN+a_1,a_2,\cdots,a_m\in \mathbb{N}_+ and a1+a2++am=na_1+a_2+\cdots+a_m=n. (2) The number of all pairs of integers (i,j)(i,j) satisfying 1i<jm1\leq i<j\leq m and ai>aja_i>a_j is even.
For example, when n=4n=4, the number of all such lists (a1,a2,,am)(a_1,a_2,\cdots,a_m) is 66, and these lists are (4),(4), (1,3),(1,3), (2,2),(2,2), (1,1,2),(1,1,2), (2,1,1),(2,1,1), (1,1,1,1)(1,1,1,1).