MathDB
O 31

Source:

May 25, 2007
inductionratioLaTeXgeometric sequence

Problem Statement

Prove that, for any integer a1>1a_{1}>1, there exist an increasing sequence of positive integers a1,a2,a3,a_{1}, a_{2}, a_{3}, \cdots such that a1+a2++an    a12+a22++an2a_{1}+a_{2}+\cdots+a_{n}\; \vert \; a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} for all nNn \in \mathbb{N}.