MathDB
Today's calculation of Integral 36

Source: 2004 Nagoya University

June 6, 2005
calculusintegrationalgebrapolynomiallimitcalculus computations

Problem Statement

A sequence of polynomial fn(x) (n=0,1,2,)f_n(x)\ (n=0,1,2,\cdots) satisfies f0(x)=2,f1(x)=xf_0(x)=2,f_1(x)=x, fn(x)=xfn1(x)fn2(x), (n=2,3,4,)f_n(x)=xf_{n-1}(x)-f_{n-2}(x),\ (n=2,3,4,\cdots) Let xn (n2)x_n\ (n\geqq 2) be the maximum real root of the equation fn(x)=0 (x2)f_n(x)=0\ (|x|\leqq 2) Evaluate limnn2xn2fn(x)dx\lim_{n\to\infty} n^2 \int_{x_n}^2 f_n(x)dx