MathDB
Miklos Schweitzer 1967_5

Source:

October 6, 2008
functionlimitintegrationinequalitiesgeometry3D geometrylogarithms

Problem Statement

Let f f be a continuous function on the unit interval [0,1] [0,1]. Show that limn01...01f(x1+...+xnn)dx1...dxn=f(12) \lim_{n \rightarrow \infty} \int_0^1... \int_0^1f(\frac{x_1+...+x_n}{n})dx_1...dx_n=f(\frac12) and limn01...01f(x1...xnn)dx1...dxn=f(1e). \lim_{n \rightarrow \infty} \int_0^1... \int_0^1f (\sqrt[n]{x_1...x_n})dx_1...dx_n=f(\frac1e).