MathDB
Chords in a Circle

Source:

December 31, 2005

Problem Statement

Let C1C_1, C2C_2 and C3C_3 be three parallel chords of a circle on the same side of the center. The distance between C1C_1 and C2C_2 is the same as the distance between C2C_2 and C3C_3. The lengths of the chords are 20, 16, and 8. The radius of the circle is (A) 12(B) 47(C) 5653(D) 5222(E) not uniquely determined\text{(A)} \ 12 \qquad \text{(B)} \ 4\sqrt{7} \qquad \text{(C)} \ \frac{5\sqrt{65}}{3} \qquad \text{(D)} \ \frac{5\sqrt{22}}{2} \qquad \text{(E)} \ \text{not uniquely determined}