MathDB
P\left(\frac{x_1}{x_2} \right)^2+P\left(\frac{x_2}{x_3} \right)^2+ ... +P\left(\

Source: Moldova TST 2022

April 1, 2022
inequalities

Problem Statement

Let P(X)P(X) be a polynomial with positive coefficients. Show that for every integer n2n \geq 2 and every nn positive numbers x1,x2,...,xnx_1, x_2,..., x_n the following inequality is true: P(x1x2)2+P(x2x3)2+...+P(xnx1)2nP(1)2.P\left(\frac{x_1}{x_2} \right)^2+P\left(\frac{x_2}{x_3} \right)^2+ ... +P\left(\frac{x_n}{x_1} \right)^2 \geq n \cdot P(1)^2. When does the equality take place?