MathDB
2019 Fall Team #8

Source:

April 17, 2022
algebra

Problem Statement

Consider an infinite sequence of reals x1,x2,x3,...x_1, x_2, x_3, ... such that x1=1x_1 = 1, x2=233x_2 =\frac{2\sqrt3}{3} and with the recursive relationship n2(xnxn1xn2)n(3xn+2xn1+xn2)+(xnxn1xn2+2xn)=0.n^2 (x_n - x_{n-1} - x_{n-2}) - n(3x_n + 2x_{n-1} + x_{n-2}) + (x_nx_{n-1}x_{n-2} + 2x_n) = 0. Find x2019x_{2019}.