MathDB
Romania EGMO TST 2022 Day 1 P4

Source:

February 15, 2022
romaniaEGMOnumber theoryfunction

Problem Statement

For every positive integer N2N\geq 2 with prime factorisation N=p1a1p2a2pkakN=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k} we define f(N):=1+p1a1+p2a2++pkak.f(N):=1+p_1a_1+p_2a_2+\cdots+p_ka_k. Let x02x_0\geq 2 be a positive integer. We define the sequence xn+1=f(xn)x_{n+1}=f(x_n) for all n0.n\geq 0. Prove that this sequence is eventually periodic and determine its fundamental period.