MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Princeton University Math Competition
2020 Princeton University Math Competition
A7
2020 PUMaC Combinatorics A7
2020 PUMaC Combinatorics A7
Source:
January 1, 2022
combinatorics
Problem Statement
Let
f
f
f
be defined as below for integers
n
≥
0
n \ge 0
n
≥
0
and
a
0
,
a
1
,
.
.
.
a_0, a_1, ...
a
0
,
a
1
,
...
such that
∑
i
≥
0
a
i
\sum_{i\ge 0}a_i
∑
i
≥
0
a
i
is finite:
f
(
n
;
a
0
,
a
1
,
.
.
.
)
=
{
a
2020
,
n
=
0
∑
i
≥
0
a
i
f
(
n
−
1
;
a
0
,
.
.
.
,
a
i
−
1
,
a
i
−
1
,
a
i
+
1
+
1
,
a
i
+
2
,
.
.
.
)
/
∑
i
≥
0
a
i
n
>
0
f(n; a_0, a_1, ...) = \begin{cases} a_{2020}, & \text{ $n = 0$} \\ \sum_{i\ge 0} a_i f(n-1;a_0,...,a_{i-1},a_i-1,a_{i+1}+1,a_{i+2},...)/ \sum_{i\ge 0}a_i & \text{$n > 0$} \end{cases}
f
(
n
;
a
0
,
a
1
,
...
)
=
{
a
2020
,
∑
i
≥
0
a
i
f
(
n
−
1
;
a
0
,
...
,
a
i
−
1
,
a
i
−
1
,
a
i
+
1
+
1
,
a
i
+
2
,
...
)
/
∑
i
≥
0
a
i
n
=
0
n
>
0
. Find the nearest integer to
f
(
202
0
2
;
2020
,
0
,
0
,
.
.
.
)
f(2020^2; 2020, 0, 0, ...)
f
(
202
0
2
;
2020
,
0
,
0
,
...
)
.
Back to Problems
View on AoPS