MathDB
2008 KMO P7

Source:

August 9, 2015
functional equationfunctionalgebra

Problem Statement

Prove that the only function f:RRf: \mathbb{R} \rightarrow \mathbb{R} satisfying the following is f(x)=xf(x)=x. (i) x0\forall x \not= 0, f(x)=x2f(1x)f(x) = x^2f(\frac{1}{x}). (ii) x,y\forall x, y, f(x+y)=f(x)+f(y)f(x+y) = f(x)+f(y). (iii) f(1)=1f(1)=1.