MathDB
|x-a_1| |x-a_2| ... |x-a_{2n}| =(n!)^2, diophantine

Source: Singapore Math Olympiad 2017 2nd Round SMO, Junior p2, Senior p1

March 26, 2020
diophantineDiophantine equationnumber theoryfactorial

Problem Statement

Let nn be a positive integer and a1,a2,...,a2na_1,a_2,...,a_{2n} be 2n2n distinct integers. Given that the equation xa1xa2...xa2n=(n!)2|x-a_1| |x-a_2| ... |x-a_{2n}| =(n!)^2 has an integer solution x=mx = m, find mm in terms of a1,a2,...,a2na_1,a_2,...,a_{2n}