MathDB
Miklós Schweitzer 2007 Problem 10

Source:

March 3, 2017
Miklos Schweitzerprobability

Problem Statement

Let ζ1,ζ2,\zeta_1, \zeta_2,\ldots be identically distributed, independent real-valued random variables with expected value 00. Suppose that the Λ(λ):=logEexp(λζi)\Lambda (\lambda) := \log \mathbb E \exp (\lambda \zeta_i) logarithmic moment-generating function always exists for λR\lambda\in\mathbb R (E\mathbb E is the expected value). Furthermore, let G ⁣:RRG\colon\mathbb R \rightarrow \mathbb R be a function such that G(x)min(x,x2)G(x)\leq \min (|x|, x^2). Prove that for small γ>0\gamma >0 the following sequence is bounded: {Eexp(γlG(1l(ζ1++ζl)))}l=1\left\{ \mathbb E \exp \left( \gamma l G \left( \frac 1l (\zeta_1+\ldots + \zeta_l)\right)\right)\right\}^{\infty}_{l=1}
(translated by j___d)