MathDB
Miklos Schweitzer 1980_7

Source:

January 28, 2009
algebrapolynomialtrigonometryreal analysisreal analysis unsolved

Problem Statement

Let n2 n \geq 2 be a natural number and p(x) p(x) a real polynomial of degree at most n n for which \max _{ \minus{}1 \leq x \leq 1} |p(x)| \leq 1, \; p(\minus{}1)\equal{}p(1)\equal{}0 \ . Prove that then |p'(x)| \leq \frac{n \cos \frac{\pi}{2n}}{\sqrt{1\minus{}x^2 \cos^2 \frac{\pi}{2n}}} \;\;\;\;\; \left( \minus{}\frac{1}{\cos \frac{\pi}{2n}} < x < \frac{1}{\cos \frac{\pi}{2n}} \\\\\ \right). J. Szabados