MathDB
a^m+a^n=a^p+a^q, a^{3m}+a^{3n}=a^{3p}+a^{3q}, prove mn=pq

Source: Lusophon 2015 CPLP P4

August 29, 2018
algebrasystem of equations

Problem Statement

Let aa be a real number, such that a0,a1,a1a\ne 0, a\ne 1, a\ne -1 and m,n,p,qm,n,p,q be natural numbers . Prove that if am+an=ap+aqa^m+a^n=a^p+a^q and a3m+a3n=a3p+a3qa^{3m}+a^{3n}=a^{3p}+a^{3q} , then mn=pqm \cdot n = p \cdot q.