MathDB
Function with prime divisors

Source: Dutch IMO TST II Problem 1

July 17, 2014
functionalgebra unsolvedalgebra

Problem Statement

Let f:Z>0R f:\mathbb{Z}_{>0}\rightarrow\mathbb{R} be a function such that for all n>1n > 1 there is a prime divisor pp of nn such that f(n)=f(np)f(p). f(n)=f\left(\frac{n}{p}\right)-f(p). Furthermore, it is given that f(22014)+f(32015)+f(52016)=2013 f(2^{2014})+f(3^{2015})+f(5^{2016})=2013 . Determine f(20142)+f(20153)+f(20165) f(2014^2)+f(2015^3)+f(2016^5) .