MathDB
IMC 2005 day 2 pb 6

Source: Peter

July 26, 2005
linear algebramatrixIMCcollege contests

Problem Statement

6. If p,q p,q are rationals, r=p+7qr=p+\sqrt{7}q, then prove there exists a matrix (abcd)M2(Z)(±I2)\left(\begin{array}{cc}a&b\\c&d\end{array}\right) \in M_{2}(Z)- ( \pm I_{2}) for which ar+bcr+d=r\frac{ar+b}{cr+d}=r and det(A)=1det(A)=1