MathDB
Points 100 ray partitional but not 60 ray partitional

Source: 2011 AMC A Problem 25

June 25, 2011
geometryalgebrafunctiondomainAMC

Problem Statement

Let RR be a square region and n4n\ge4 an integer. A point XX in the interior of RR is called n-rayn\text{-}ray partitional if there are nn rays emanating from XX that divide RR into nn triangles of equal area. How many points are 100-ray partitional but not 60-ray partitional?
<spanclass=latexbold>(A)</span>1500<spanclass=latexbold>(B)</span>1560<spanclass=latexbold>(C)</span>2320<spanclass=latexbold>(D)</span>2480<spanclass=latexbold>(E)</span>2500<span class='latex-bold'>(A)</span>\,1500 \qquad<span class='latex-bold'>(B)</span>\,1560 \qquad<span class='latex-bold'>(C)</span>\,2320 \qquad<span class='latex-bold'>(D)</span>\,2480 \qquad<span class='latex-bold'>(E)</span>\,2500