MathDB
Problems
Contests
National and Regional Contests
Romania Contests
District Olympiad
2001 District Olympiad
4
Romania District Olympiad 2001 - Grade VIII
Romania District Olympiad 2001 - Grade VIII
Source:
March 12, 2011
geometry proposed
geometry
Problem Statement
Consider a rectangular parallelepiped
A
B
C
D
A
′
B
′
C
′
D
′
ABCDA'B'C'D'
A
BC
D
A
′
B
′
C
′
D
′
in which we denote
A
B
=
a
,
B
C
=
b
,
A
A
′
=
c
AB=a,\ BC=b,\ AA'=c
A
B
=
a
,
BC
=
b
,
A
A
′
=
c
. Let
D
E
⊥
A
C
,
D
F
⊥
A
′
C
,
E
∈
A
C
,
F
∈
A
′
C
DE\perp AC,\ DF\perp A'C,\ E\in AC,\ F \in A'C
D
E
⊥
A
C
,
D
F
⊥
A
′
C
,
E
∈
A
C
,
F
∈
A
′
C
and
C
′
P
⊥
B
′
D
′
,
C
′
Q
⊥
B
D
′
,
P
∈
B
′
D
′
,
Q
∈
B
D
′
C'P\perp B'D',\ C'Q\perp BD',\ P\in B'D',\ Q\in BD'
C
′
P
⊥
B
′
D
′
,
C
′
Q
⊥
B
D
′
,
P
∈
B
′
D
′
,
Q
∈
B
D
′
. Prove that the planes
(
D
E
F
)
(DEF)
(
D
EF
)
and
(
C
′
P
Q
)
(C'PQ)
(
C
′
PQ
)
are perpendicular if and only if
a
2
+
c
2
=
b
2
a^2+c^2=b^2
a
2
+
c
2
=
b
2
.Sorin Peligrad
Back to Problems
View on AoPS