MathDB
Romania District Olympiad 2001 - Grade VIII

Source:

March 12, 2011
geometry proposedgeometry

Problem Statement

Consider a rectangular parallelepiped ABCDABCDABCDA'B'C'D' in which we denote AB=a, BC=b, AA=cAB=a,\ BC=b,\ AA'=c. Let DEAC, DFAC, EAC, FACDE\perp AC,\ DF\perp A'C,\ E\in AC,\ F \in A'C and CPBD, CQBD, PBD, QBDC'P\perp B'D',\ C'Q\perp BD',\ P\in B'D',\ Q\in BD'. Prove that the planes (DEF)(DEF) and (CPQ)(C'PQ) are perpendicular if and only if a2+c2=b2a^2+c^2=b^2.
Sorin Peligrad