MathDB
Problems
Contests
Undergraduate contests
IMC
2004 IMC
1
Problem 7 IMC 2004 Macedonia
Problem 7 IMC 2004 Macedonia
Source:
July 26, 2004
linear algebra
matrix
algebra
polynomial
limit
IMC
college contests
Problem Statement
Let
A
A
A
be a real
4
×
2
4\times 2
4
×
2
matrix and
B
B
B
be a real
2
×
4
2\times 4
2
×
4
matrix such that
A
B
=
(
1
0
−
1
0
0
1
0
−
1
−
1
0
1
0
0
−
1
0
1
)
.
AB = \left(% \begin{array}{cccc} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ \end{array}% \right).
A
B
=
1
0
−
1
0
0
1
0
−
1
−
1
0
1
0
0
−
1
0
1
.
Find
B
A
BA
B
A
.
Back to Problems
View on AoPS