MathDB
Problems
Contests
National and Regional Contests
PEN Problems
PEN S Problems
38
S 38
S 38
Source:
May 25, 2007
function
trigonometry
calculus
integration
Miscellaneous Problems
Problem Statement
The function
μ
:
N
→
C
\mu: \mathbb{N}\to \mathbb{C}
μ
:
N
→
C
is defined by
μ
(
n
)
=
∑
k
∈
R
n
(
cos
2
k
π
n
+
i
sin
2
k
π
n
)
,
\mu(n) = \sum^{}_{k \in R_{n}}\left( \cos \frac{2k\pi}{n}+i \sin \frac{2k\pi}{n}\right),
μ
(
n
)
=
k
∈
R
n
∑
(
cos
n
2
kπ
+
i
sin
n
2
kπ
)
,
where
R
n
=
{
k
∈
N
∣
1
≤
k
≤
n
,
gcd
(
k
,
n
)
=
1
}
R_{n}=\{ k \in \mathbb{N}\vert 1 \le k \le n, \gcd(k, n)=1 \}
R
n
=
{
k
∈
N
∣1
≤
k
≤
n
,
g
cd
(
k
,
n
)
=
1
}
. Show that
μ
(
n
)
\mu(n)
μ
(
n
)
is an integer for all positive integer
n
n
n
.
Back to Problems
View on AoPS