MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
1953 Miklós Schweitzer
3
Miklós Schweitzer 1953- Problem 3
Miklós Schweitzer 1953- Problem 3
Source: Miklós Schweitzer 1953- Problem 3
August 3, 2015
Sequences
polynomial
college contests
Problem Statement
3. Denoting by
E
E
E
the class of trigonometric polynomials of the form
f
(
x
)
=
c
0
+
c
1
c
o
s
(
x
)
+
⋯
+
c
n
c
o
s
(
n
x
)
f(x)=c_{0}+c_{1}cos(x)+\dots +c_{n} cos(nx)
f
(
x
)
=
c
0
+
c
1
cos
(
x
)
+
⋯
+
c
n
cos
(
n
x
)
, where
c
0
≥
c
1
≥
⋯
≥
c
n
>
0
c_{0} \geq c_{1} \geq \dots \geq c_{n}>0
c
0
≥
c
1
≥
⋯
≥
c
n
>
0
, prove that
(
1
−
2
π
)
1
n
+
1
≤
m
i
n
f
ϵ
E
(
m
a
x
π
2
≤
x
≤
π
∣
f
(
x
)
∣
m
a
x
0
≤
x
≤
2
π
∣
f
(
x
)
∣
)
≤
(
1
2
+
1
2
)
1
n
+
1
(1-\frac{2}{\pi})\frac{1}{n+1}\leq min_{{f\epsilon E}}( \frac{max_{\frac{\pi}{2}\leq x\leq \pi} \left | f(x) \right |}{max_{0\leq x\leq 2\pi} \left | f(x) \right |})\leq (\frac{1}{2}+\frac{1}{\sqrt{2}})\frac{1}{n+1}
(
1
−
π
2
)
n
+
1
1
≤
mi
n
f
ϵ
E
(
ma
x
0
≤
x
≤
2
π
∣
f
(
x
)
∣
ma
x
2
π
≤
x
≤
π
∣
f
(
x
)
∣
)
≤
(
2
1
+
2
1
)
n
+
1
1
. (S. 24)
Back to Problems
View on AoPS