MathDB
Miklós Schweitzer 1953- Problem 3

Source: Miklós Schweitzer 1953- Problem 3

August 3, 2015
Sequencespolynomialcollege contests

Problem Statement

3. Denoting by EE the class of trigonometric polynomials of the form f(x)=c0+c1cos(x)++cncos(nx)f(x)=c_{0}+c_{1}cos(x)+\dots +c_{n} cos(nx), where c0c1cn>0c_{0} \geq c_{1} \geq \dots \geq c_{n}>0, prove that
(12π)1n+1minfϵE(maxπ2xπf(x)max0x2πf(x))(12+12)1n+1(1-\frac{2}{\pi})\frac{1}{n+1}\leq min_{{f\epsilon E}}( \frac{max_{\frac{\pi}{2}\leq x\leq \pi} \left | f(x) \right |}{max_{0\leq x\leq 2\pi} \left | f(x) \right |})\leq (\frac{1}{2}+\frac{1}{\sqrt{2}})\frac{1}{n+1}.
(S. 24)