MathDB
Some average sequences

Source: Austrian-Polish 2004, Problem 9

July 5, 2015
Sequencesalgebra

Problem Statement

Given are the sequences (...,a2,a1,a0,a1,a2,...);(...,b2,b1,b0,b1,b2,...);(...,c2,c1,c0,c1,c2,...) (..., a_{-2}, a_{-1}, a_0, a_1, a_2, ...); (..., b_{-2}, b_{-1}, b_0, b_1, b_2, ...); (..., c_{-2}, c_{-1}, c_0, c_1, c_2, ...) of positive real numbers. For each integer nn the following inequalities hold: an12(bn+1+cn1)a_n \geq \frac{1}{2} (b_{n+1} + c_{n-1}) bn12(cn+1+an1)b_n \geq \frac{1}{2} (c_{n+1} + a_{n-1}) cn12(an+1+bn1)c_n \geq \frac{1}{2} (a_{n+1} + b_{n-1}) Determine a2005a_{2005}, b2005b_{2005}, c2005c_{2005}, if a0=26,b0=6,c0=2004a_0 = 26, b_0 = 6, c_0 = 2004.