MathDB
IMC 2021 first day , problem 4

Source: IMC first day , problem 4

August 4, 2021
functionreal analysisIMC 2021

Problem Statement

Let f:RRf:\mathbb{R}\to \mathbb{R} be a function. Suppose that for every ε>0\varepsilon >0 , there exists a function g:R(0,)g:\mathbb{R}\to (0,\infty) such that for every pair (x,y)(x,y) of real numbers, if xy<min{g(x),g(y)}|x-y|<\text{min}\{g(x),g(y)\}, then f(x)f(y)<ε|f(x)-f(y)|<\varepsilon Prove that ff is pointwise limit of a squence of continuous RR\mathbb{R}\to \mathbb{R} functions i.e., there is a squence h1,h2,...,h_1,h_2,..., of continuous RR\mathbb{R}\to \mathbb{R} such that limnhn(x)=f(x)\lim_{n\to \infty}h_n(x)=f(x) for every xRx\in \mathbb{R}