MathDB
Rhombus Minimization

Source:

January 5, 2009
geometryrhombusinequalitiessimilar trianglesPythagorean Theorem

Problem Statement

Let ABCD ABCD be a rhombus with AC\equal{}16 and BD\equal{}30. Let N N be a point on AB \overline{AB}, and let P P and Q Q be the feet of the perpendiculars from N N to AC \overline{AC} and BD \overline{BD}, respectively. Which of the following is closest to the minimum possible value of PQ PQ? [asy]unitsize(2.5cm); defaultpen(linewidth(.8pt)+fontsize(8pt));
pair D=(0,0), C=dir(0), A=dir(aSin(240/289)), B=shift(A)*C; pair Np=waypoint(B--A,0.6), P=foot(Np,A,C), Q=foot(Np,B,D);
draw(A--B--C--D--cycle); draw(A--C); draw(B--D); draw(Np--Q); draw(Np--P);
label("DD",D,SW); label("CC",C,SE); label("BB",B,NE); label("AA",A,NW); label("NN",Np,N); label("PP",P,SW); label("QQ",Q,SSE);
draw(rightanglemark(Np,P,C,2)); draw(rightanglemark(Np,Q,D,2));[/asy]<spanclass=latexbold>(A)</span> 6.5<spanclass=latexbold>(B)</span> 6.75<spanclass=latexbold>(C)</span> 7<spanclass=latexbold>(D)</span> 7.25<spanclass=latexbold>(E)</span> 7.5 <span class='latex-bold'>(A)</span>\ 6.5 \qquad <span class='latex-bold'>(B)</span>\ 6.75 \qquad <span class='latex-bold'>(C)</span>\ 7 \qquad <span class='latex-bold'>(D)</span>\ 7.25 \qquad <span class='latex-bold'>(E)</span>\ 7.5