MathDB
A sequence of integers

Source: Romania TST 1995 Test 3 P4

February 22, 2014
number theory

Problem Statement

Find a sequence of positive integers f(n)f(n) (nNn \in \mathbb{N}) such that: (i) f(n)n8f(n) \leq n^8 for any n2n \geq 2; (ii) for any distinct a1,,ak,na_1, \cdots, a_k, n, f(n)f(a1)++f(ak)f(n) \neq f(a_1) + \cdots+ f(a_k).