MathDB
log inequality

Source: Croatia 2000 2nd Grade P1

May 8, 2021
inequalities

Problem Statement

Let a>0a>0 and x1,x2,x3x_1,x_2,x_3 be real numbers with x1+x2+x3=0x_1+x_2+x_3=0. Prove that log2(1+ax1)+log2(1+ax2)+log2(1+ax3)3.\log_2\left(1+a^{x_1}\right)+\log_2\left(1+a^{x_2}\right)+\log_2\left(1+a^{x_3}\right)\ge3.