MathDB
Choosing signs + or - to make the sum equal to 0

Source: Romanian TST 2002

February 5, 2011
modular arithmeticfloor functioncombinatorics proposedcombinatorics

Problem Statement

For any positive integer nn, let f(n)f(n) be the number of possible choices of signs + or +\ \text{or}\ - in the algebraic expression ±1±2±n\pm 1\pm 2\ldots \pm n, such that the obtained sum is zero. Show that f(n)f(n) satisfies the following conditions: a) f(n)=0f(n)=0 for n=1(mod4)n=1\pmod{4} or n=2(mod4)n=2\pmod{4}. b) 2n21f(n)2n2n2+12^{\frac{n}{2}-1}\le f(n)\le 2^n-2^{\lfloor\frac{n}{2}\rfloor+1}, for n=0(mod4)n=0\pmod{4} or n=3(mod4)n=3\pmod{4}.
Ioan Tomsecu