Polynomial P(x)=c2006x2006+c2005x2005+…+c1x+c0 has roots r1,r2,…,r2006. The coefficients satisfy 2ic2006−ici=2jc2006−jcj for all pairs of integers 0≤i,j≤2006. Given that ∑i=j,i=1,j=12006rjri=42, determine ∑i=12006(r1+r2+…+r2006).