MathDB
Problems
Contests
National and Regional Contests
Korea Contests
Korea National Olympiad
1997 Korea National Olympiad
4
Classic Number Theory
Classic Number Theory
Source: 1997 Korea National Olympiad #4
March 18, 2018
number theory
prime numbers
Problem Statement
For any prime number
p
>
2
,
p>2,
p
>
2
,
and an integer
a
a
a
and
b
,
b,
b
,
if
1
+
1
2
3
+
1
3
3
+
⋯
+
1
(
p
−
1
)
3
=
a
b
,
1+\frac{1}{2^3}+\frac{1}{3^3}+\cdots+\frac{1}{(p-1)^3}=\frac{a}{b},
1
+
2
3
1
+
3
3
1
+
⋯
+
(
p
−
1
)
3
1
=
b
a
,
prove that
a
a
a
is divisible by
p
.
p.
p
.
Back to Problems
View on AoPS