MathDB
Classic Number Theory

Source: 1997 Korea National Olympiad #4

March 18, 2018
number theoryprime numbers

Problem Statement

For any prime number p>2,p>2, and an integer aa and b,b, if 1+123+133++1(p1)3=ab,1+\frac{1}{2^3}+\frac{1}{3^3}+\cdots+\frac{1}{(p-1)^3}=\frac{a}{b}, prove that aa is divisible by p.p.