MathDB
Romanian District Olympiad 2019 - Grade 11 - Problem 4

Source: Romanian District Olympiad 2019 - Grade 11 - Problem 4

March 16, 2019
continuous functionConvergenceSequencescalculus

Problem Statement

Let f:[0,)[0,)f: [0, \infty) \to [0, \infty) be a continuous function with f(0)>0f(0)>0 and having the property xy<f(y)f(x)0  0x<y.x-y<f(y)-f(x) \le 0~\forall~0 \le x<y. Prove that: a)a) There exists a unique α(0,)\alpha \in (0, \infty) such that (ff)(α)=α.(f \circ f)(\alpha)=\alpha. b)b) The sequence (xn)n1,(x_n)_{n \ge 1}, defined by x10x_1 \ge 0 and xn+1=f(xn)  nNx_{n+1}=f(x_n)~\forall~n \in \mathbb{N} is convergent.