MathDB
$$\max_{1\leq i\leq n} |a_i-f(a_i)| \geq \max_{1\leq i\leq n} |a_i-b_i|$$

Source: Moldova TST 1998

August 8, 2023
function

Problem Statement

Let A={a1,a2,,an}A=\{a_1,a_2,\ldots,a_n\} be a set with a1<a2<ana_1<a_2\ldots<a_n and B={b1,b2,,bn}B=\{b_1,b_2,\ldots,b_n\} be a set with b1<b2<bnb_1<b_2\ldots<b_n. Show that for every bijective function f:ABf:A\rightarrow B the following relation takes place max1inaif(ai)max1inaibi.\max_{1\leq i\leq n} |a_i-f(a_i)| \geq \max_{1\leq i\leq n} |a_i-b_i|.