MathDB
an inequality with distinct positive integers by Panaitopol

Source: Romanian IMO Team Selection Test TST 1999, problem 5

September 24, 2005
inequalitiesinequalities proposed

Problem Statement

Let x1,x2,,xnx_1,x_2,\ldots,x_n be distinct positive integers. Prove that x12+x22++xn22n+13(x1+x2++xn). x_1^2+x_2^2 + \cdots + x_n^2 \geq \frac {2n+1}3 ( x_1+x_2+\cdots + x_n). Laurentiu Panaitopol