MathDB
Harmonic

Source: Canada 1973/5

January 11, 2007

Problem Statement

For every positive integer nn, let h(n)=1+12+13++1n.h(n) = 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}. For example, h(1)=1h(1) = 1, h(2)=1+12h(2) = 1+\frac{1}{2}, h(3)=1+12+13h(3) = 1+\frac{1}{2}+\frac{1}{3}. Prove that for n=2,3,4,n=2,3,4,\ldots n+h(1)+h(2)+h(3)++h(n1)=nh(n).n+h(1)+h(2)+h(3)+\cdots+h(n-1) = nh(n).