MathDB
3 Nov FE problem

Source:

November 3, 2016
functionalgebra

Problem Statement

Find all tZt\in \mathbb Z such that: exists a function f:Z+Zf:\mathbb Z^+\to \mathbb Z such that: f(1997)=1998f(1997)=1998 x,yZ+,gcd(x,y)=d:f(xy)=f(x)+f(y)+tf(d):P(x,y)\forall x,y\in \mathbb Z^+ , \text{gcd}(x,y)=d : f(xy)=f(x)+f(y)+tf(d):P(x,y)