MathDB
Problem 5.16 (Star Theorem)

Source:

May 27, 2018
Chapter 5

Problem Statement

Let A1A2A3A4A5A_1A_2A_3A_4A_5 be a convex pentagon. Suppose rays A2A3A_2A_3 and A5A4A_5A_4 meet at the point X1X_1. Define X2X_2, X3X_3, X4X_4, X5X_5 similarly. Prove that i=15XiAi+2=i=15XiAi+3\displaystyle\prod_{i=1}^{5} X_iA_{i+2} = \displaystyle\prod_{i=1}^{5} X_iA_{i+3} where the indices are taken modulo 5.